Презентация - "Презентация 7 класс задачи на построение"
- Презентации / Другие презентации
- 0
- 03.06.24
Просмотреть и скачать презентацию на тему "Презентация 7 класс задачи на построение"
Исторические сведения:
И в Вавилоне, и в Древнем Египте в IV–II тысячелетиях до н.э. уже существовала практическая математика (в виде правил записи чисел, т.е. системы счисления, и правил различных вычислений), и практическая геометрия – геометрия в изначальном смысле слова: измерение земли. Но и при измерениях, и при строительных работах нужны были построения.
3
В геометрии выделяют задачи на построение, которые можно решить только с помощью двух инструментов: циркуля и линейки без масштабных делений.
Линейка позволяет провести произвольную
прямую, а также построить прямую, проходящую
через две данные точки; с помощью циркуля
можно провести окружность произвольного
радиуса, а также окружность с центром в
данной точке и радиусом, равным данному
отрезку.
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
А
В
С
Построение угла, равного данному.
Дано: угол А.
О
D
E
Теперь докажем, что построенный угол равен данному.
Построение угла, равного данному.
Дано: угол А.
А
Построили угол О.
В
С
О
D
E
Доказать: А = О
Доказательство: рассмотрим треугольники АВС и ОDE.
АС=AB, как радиусы окружности c центром А.
OE=ОD, как радиусы окружности с центром О.
ВС=DE по построению.
АВС= ОDЕ (3 приз.) А = О
Докажем, что луч АВ – биссектриса А
П Л А Н
Дополнительное построение.
Докажем равенство
треугольников ∆ АСВ и ∆ АDB.
3. Выводы
А
В
С
D
АС=АD, как радиусы одной окружности.
СВ=DB, как радиусы одной окружности.
АВ – общая сторона.
∆АСВ = ∆ АDВ, по III признаку
равенства треугольников
Луч АВ – биссектриса
Докажем, что а РМ
АМ=МВ, как радиусы одной окружности.
АР=РВ, как радиусы одной окружности
АРВ р/б
3. РМ медиана в р/б треугольнике является также ВЫСОТОЙ.
Значит, а РМ.
М
М a
a
В
А
Q
P
a
N
B
М a
A
C
1 = 2
1
2
В р/б треугольнике АМВ отрезок МС является биссектрисой,
а значит, и высотой. Тогда, а МN.
М
Докажем, что а MN
Посмотрим
на расположение
циркулей.
АМ=АN=MB=BN,
как равные радиусы.
МN-общая сторона.
MВN= MAN,
по трем сторонам
Q
P
В
А
АРQ = BPQ,
по трем сторонам.
1
2
1 = 2
Треугольник АРВ р/б.
Отрезок РО является биссектрисой,
а значит, и медианой.
Тогда, точка О – середина АВ.
О
Докажем, что О –
середина отрезка АВ.