Презентация - "Решение неравенств второй степени"

- Презентации / Презентации по Алгебре
- 0
- 16.10.20
Просмотреть и скачать презентацию на тему "Решение неравенств второй степени"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Решение неравенств второй степени", чтобы сделать обучение более организованным, интересным и результативным.
Обобщить, систематизировать и расширить знания по теме «Решение неравенств второй степени с одной неизвестной».
ХОД ИССЛЕДОВАНИЯ: Определение неравенств второй степени Методы решения неравенств: Графический: Решение неравенства второй степени при Метод интервалов
Неравенства вида где х – переменная, a, b и с некоторые числа, причем , называют неравенствами второй степени с одной переменной.
Решение неравенства второй степени с одной переменной можно рассматривать как нахождение промежутков, в которых соответствующая квадратичная функция принимает положительные или отрицательные значения. При решении неравенства графическим способом важно знать как направлены ветви параболы – вверх или вниз и каковы абсциссы точек её пересечения с осью х, координаты вершины параболы нас не интересуют.
РЕШЕНИЕ НЕРАВЕНСТВА ВТОРОЙ СТЕПЕНИ ПРИ Неравенство вида Пример 1. Решим неравенство Рассмотрим функцию Графиком этой функции является парабола, ветви которой направлены вверх. Найдем нули функции. Решим уравнение Уравнение не имеет корней. Значит парабола не имеет общих точек с осью х. Показав схематически расположение параболы в координатой плоскости, найдем, что функция принимает положительные значения при любом х. Ответ: х у 0
РЕШЕНИЕ НЕРАВЕНСТВА ВТОРОЙ СТЕПЕНИ ПРИ Неравенство вида Пример 2. Решим неравенство: Рассмотрим функцию Графиком этой функции является парабола, ветви которой направлены вверх. Найдем нули функции. Решим уравнение Уравнение не имеет корней. Значит парабола не имеет общих точек с осью х. Показав схематически расположение параболы в координатой плоскости, найдем, что функция принимает положительные значения при любом х. Ответ: х у 0
РЕШЕНИЕ НЕРАВЕНСТВА ВТОРОЙ СТЕПЕНИ ПРИ Неравенство вида Пример 3. Решим неравенство: Рассмотрим функцию Графиком этой функции является парабола, ветви которой направлены вверх. Найдем нули функции. Решим уравнение Уравнение не имеет корней. Значит парабола не имеет общих точек с осью х. Показав схематически расположение параболы в координатой плоскости, найдем, что функция не принимает отрицательных значений. Ответ: нет решений. х у 0
РЕШЕНИЕ НЕРАВЕНСТВА ВТОРОЙ СТЕПЕНИ ПРИ Неравенство вида Пример 4. Решим неравенство: Рассмотрим функцию Графиком этой функции является парабола, ветви которой направлены вверх. Найдем нули функции. Решим уравнение Уравнение не имеет корней. Значит парабола не имеет общих точек с осью х. Показав схематически расположение параболы в координатой плоскости, найдем, что функция не принимает отрицательных значений. Ответ: нет решений. х у 0
РЕШЕНИЕ НЕРАВЕНСТВА ВТОРОЙ СТЕПЕНИ ПРИ Неравенство вида Пример 5. Решим неравенство: Рассмотрим функцию Графиком этой функции является парабола, ветви которой направлены вниз. Найдем нули функции. Решим уравнение Уравнение не имеет корней. Значит парабола не имеет общих точек с осью х. Показав схематически расположение параболы в координатой плоскости, найдем, что функция не принимает положительных значений. Ответ: нет решений. х у 0









