Презентация - "Презентация по геометрии на тему "ОБЪЕМ ПИРАМИДЫ"(11 класс)"

- Презентации / Другие презентации
- 0
- 15.05.23
Просмотреть и скачать презентацию на тему "Презентация по геометрии на тему "ОБЪЕМ ПИРАМИДЫ"(11 класс)"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Презентация по геометрии на тему "ОБЪЕМ ПИРАМИДЫ"(11 класс)", чтобы сделать обучение более организованным, интересным и результативным.
Пирамидой называется многогранник, который состоит из плоского многоугольника – основания пирамиды, точки, не лежащей в плоскости основания – вершины пирамиды и треугольников -боковых граней.
Пирамида называется правильной, если ее основание - правильный многоугольник , а отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.
Аn
А1
А2
P
h
O
А3
Апофема – высота боковой грани правильной пирамиды, проведенная из ее вершины
Апофемы
Все апофемы правильной пирамиды равны друг другу
Диагональное сечение пирамиды – сечение плоскостью, проходящей через два не соседних боковых ребра
Свойства пирамиды:
У правильной пирамиды:
боковые ребра равны;
боковые грани являются равными равнобедренными треугольниками;
апофемы равны;
площадь боковой поверхности правильной пирамиды равна половине произведения периметра на апофему.
Свойства пирамиды:
если боковые ребра пирамиды равны (или составляют равные углы с плоскостью основания), то вершина пирамиды проецируется в центр окружности, описанной около основания.
если двугранные углы при основании пирамиды равны (или равны высоты боковых граней, проведенные из вершины пирамиды), то вершина пирамиды проецируется в центр окружности, вписанной в основание пирамиды.
Теорема: Объём усечённой пирамиды, высота которой h, а площади оснований равны S и S₁ вычисляется по формуле.
Объем усеченной пирамиды будем рассматривать как разность объемов полной пирамиды и той, что отсечена от нее плоскостью, параллельной основанию
3
х
1
0
х
В 13
5
0
,
2
Задачи по готовым чертежам
Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна .
Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен .
3
х
1
0
х
В 13
3
.
Н
Задачи по готовым чертежам
В правильной четырехугольной пирамиде высота равна 6, сторона основания равна 10. Найдите ее объем.
В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.
450
Сторона основания правильной треугольной пирамиды равна 6, а боковое ребро образует с плоскостью основания угол 450. Найдите объем пирамиды.
Задачи (база)
Высота правильной треугольной пирамиды равна , а боковая грань образует с плоскостью основания угол 600. Найдите объем пирамиды.
Задачи (профиль)
Объем треугольной пирамиды SABC, являющейся частью правильной шестиугольной пирамиды SABCDEF, равен 8. Найдите объем шестиугольной пирамиды.
От треугольной пирамиды, объем которой равен 12, отсечена треугольная пирамида плоскостью, проходящей через вершину пирамиды и среднюю линию основания.
Найдите объем отсеченной треугольной пирамиды.

























