Презентация - "Бенефис одной задачи"

0
14.10.20
На нашем сайте презентаций klass-uchebnik.com вы можете бесплатно ознакомиться с полной версией презентации "Бенефис одной задачи". Учебное пособие по дисциплине - Презентации / Презентации по Геометрии, от атора . Презентации нашего сайта - незаменимый инструмент для школьников, здесь они могут изучать и просматривать слайды презентаций прямо на сайте на вашем устройстве (IPhone, Android, PC) совершенно бесплатно, без необходимости регистрации и отправки СМС. Кроме того, у вас есть возможность скачать презентации на ваше устройство в формате PPT (PPTX).
Бенефис одной задачи 📚 Учебники, Презентации и Подготовка к Экзаменам для Школьников на Klass-Uchebnik.com

0
0
0

Поделиться презентацией "Бенефис одной задачи" в социальных сетях: 

Просмотреть и скачать презентацию на тему "Бенефис одной задачи"

Презентация по геометрии. Подготовили ученики 9б класса Лунин Александр Горемыкин Олег
1 слайд

Презентация по геометрии. Подготовили ученики 9б класса Лунин Александр Горемыкин Олег

Бенефис одной задачи. (В одной задаче – почти вся планиметрия!)
2 слайд

Бенефис одной задачи. (В одной задаче – почти вся планиметрия!)

Задача. В трапеции диагонали длиной 6 см и 8 см взаимно перпендикулярны. Найдите длину средней линии
3 слайд

Задача. В трапеции диагонали длиной 6 см и 8 см взаимно перпендикулярны. Найдите длину средней линии трапеции.

Способ №1 1. Продолжим BC вправо. Проведем DK || AC. Так как ACKD – параллелограмм, то DK=6 см. 2. B
4 слайд

Способ №1 1. Продолжим BC вправо. Проведем DK || AC. Так как ACKD – параллелограмм, то DK=6 см. 2. BD┴DK, так как BD ┴ AC. Δ BDK – прямоугольный. BK= ; BK= =10(см). 3. BK=BC+AD. Средняя линия равна половине BK, то есть 5 см. Ответ: 5 см. В С А D K О

Способ №2 (похож на 1) Проведем СЕ || BD до пересечения с продолжением AD. DE = BC, так как DBCE – п
5 слайд

Способ №2 (похож на 1) Проведем СЕ || BD до пересечения с продолжением AD. DE = BC, так как DBCE – параллелограмм. AE вычислим по теореме Пифагора из ΔACE (CE || BD, но BD ┴ AC, следовательно,CE ┴AC): AE = ; AE = = 10(см). AE = a+b. Но средняя линия равна (a+b)/2 , т.е. равна 5 см. Ответ: 5 см. A B C D E a b 6 8

Способ №3 MN – средняя линия трапеции. Проведем MK || BD и соединим точки N и K. NK – средняя линия
6 слайд

Способ №3 MN – средняя линия трапеции. Проведем MK || BD и соединим точки N и K. NK – средняя линия ΔACD, следовательно NK=0,5 AC; NK = 3(см). MK – средняя линия ΔABD, следовательно MK=0,5 BD; MK=4(см). Угол MKN равен углу AOD как углы с соответственно параллельными сторонами. ΔMKN – прямоугольный. MN = = =5(см). Ответ: 5 см. A B C D O M N K

Способ №4 1.Продолжим CA на расстояние AM = CО. Через точку М проведем MN || AD. BD ∩ MN = N. 2. ΔOM
7 слайд

Способ №4 1.Продолжим CA на расстояние AM = CО. Через точку М проведем MN || AD. BD ∩ MN = N. 2. ΔOMN – прямоугольный, OM = 6 см, ON = 8 см. Следовательно, MN = 10 cм (теорема Пифагора). 3. Проведем MK || ND. Продолжим AD до пересечения с MK. ΔMAK = ΔBOC (по I признаку), следовательно AK = = BC. 4. MKDN – параллелограмм, DK= MN = 10 см. Но DK = AD+BC. Значит, средняя линия равна 5 см. Ответ: 5 см. A B C D M K O N

Способ №5 Соединим середины сторон трапеции. Легко доказать, что MPNQ – параллелограмм с прямым угло
8 слайд

Способ №5 Соединим середины сторон трапеции. Легко доказать, что MPNQ – параллелограмм с прямым углом, т.е. прямоугольник со сторонами 3 см и 4 см. Диагонали его MN = PQ= 5 см (египетский треугольник).   Ответ: MN = 5 cм. P M Q N 3 4

Способ №6 Продолжим AC за точку A так, что АМ = ОС. Продолжим BD за точку D так, что DN = BO. Итак,
9 слайд

Способ №6 Продолжим AC за точку A так, что АМ = ОС. Продолжим BD за точку D так, что DN = BO. Итак, ΔOMN – прямоугольный с катетами 6 см и 8 см. По теореме Пифагора MN = 10 см. Проведем AE ┴ MN, DF ┴ MN, OK ┴ BC.   ΔAME = ΔKOC и ΔDFN = ΔBKO по стороне и двум прилежащим к ней углам.   Следовательно, ME = KC и FH = BK, т.е. MN = AD + BC = 10 (см).   Средняя линия равна (AD+BC)/2= =MN/2=10/2 = 5.   Ответ: 5 см. O M E F N

Способ №7 Пусть OC = x, BO = y; тогда АО = 6 – х, DO = 8 – y. MN – средняя линия. 1.Из подобия ΔBOC
10 слайд

Способ №7 Пусть OC = x, BO = y; тогда АО = 6 – х, DO = 8 – y. MN – средняя линия. 1.Из подобия ΔBOC и ΔAOD имеем: х/(6-х) = у/(8-у), 8х – ху = 6у – ху, 8х = 6у, у = 4/3х. 2. Из прямоугольного треугольника ΔBOC имеем: ВС = √ x²+ (4/3x)² = √ x² + 16/9x² = √ 25/9x² = 5/3x. 3.Из подобия ΔBOC и ΔAOD имеем: BC/AD = OC/AO, (5/3x)/AD = x/(6-x), AD = 5/3(6-x) = 10-5/3x. 4. MN = (AD + BC) = (5/3x+10-5/3x)/2 = 5 (см). Ответ: 5 см.

Способ №8 1.Из подобия ΔBOC и ΔAOD: x/(6-x) = y/(8-y), y=4/3x.  2.Продолжим диагонали на отрезки, ра
11 слайд

Способ №8 1.Из подобия ΔBOC и ΔAOD: x/(6-x) = y/(8-y), y=4/3x.  2.Продолжим диагонали на отрезки, равные CO и BO.  3.Из ΔMON: MN = 10 см.  4. AOD подобен ΔMON; MN = 4/3 AD, AD = 3/4MN = =3/4*10 = = 7,5 (см).  5.В ΔBOC: BC = x²+(4/3x)² = 5/√3x.  6.ΔBOC подобен ΔAOD. BC/AD = OC/AO, (5/3x²)/7,5 = x/(6-x); 10x-5/3x² = 7,5x; 2,5x = 5/3x²; 7,5 = 5x; x = 1,5 (cм).  7. BC = 5/3x = 5/3*1,5 = 2,5 (см). 8. Средняя линия равна (AD+BC)/2 = (7,5+2,5)/2 = 5. Ответ: 5 см.   M N y x 6-x 8-y O

Способ №9 Тригонометрический 1. Из подобия ΔBOC и ΔAOD: X/(6-x) = y/(8-y) , y =4/3 х. 2. Δ BOC – пря
12 слайд

Способ №9 Тригонометрический 1. Из подобия ΔBOC и ΔAOD: X/(6-x) = y/(8-y) , y =4/3 х. 2. Δ BOC – прямоугольный. tg α =y/x =4/3x : x = у =4/3 . 3. Найдем cos α либо по формуле: 1+tg²α = 1/cos a, либо методом треугольника: cos α = 3/5. 4. Из ΔBOC: OC/BC = cos α, BC = OC/cos α =4*5/3 = 5/3 x. 5. Из ΔAOD: AO/OD = cos α, AD = AO/ cos α = (6-x)/3/5 = 5(6-x)/3 . 6. Средняя линия равна (AD+BC)/2 = 5 (см).

Способ №10 (тригонометрический) 1. Из подобия треугольников BOC и AOD: x/(6-x) = y/(8-y), y =4/3x. x
13 слайд

Способ №10 (тригонометрический) 1. Из подобия треугольников BOC и AOD: x/(6-x) = y/(8-y), y =4/3x. x/(6-x) = b/a.   2. ax = 6b – bx, (a+b)x = 6b, (a+b)/2 = 3b/x, (a+b)/2 = 3/sin α. tg α = x/y = x/(4/3x) = 3/4, α = arctg 3/4. 3. (a+b)/2 = 3/sin(arctg 3/4) = 3 / 3/5 = 5. 4. tg α = 3/4 sin α = ? sin α = 3/5 5 3 4 α

Комментарии (0) к презентации "Бенефис одной задачи"