Презентация - "Геометрические задачи «С2»"

- Презентации / Презентации по Геометрии
- 0
- 14.10.20
Просмотреть и скачать презентацию на тему "Геометрические задачи «С2»"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Геометрические задачи «С2»", чтобы сделать обучение более организованным, интересным и результативным.
Презентация по материалам рабочей тетради «Задача С2» авторов В.А. Смирнова под редакцией И.В. Ященко, А.Л. Семенова Геометрические задачи «С2» МОУ СОШ № 25 г. Крымска Малая Е.В.
«Недостаточно лишь понять задачу, необходимо желание решить ее. Без сильного желания решить трудную задачу невозможно, но при наличии такового возможно. Где есть желание, найдется путь!» Пойа Д.
Повторение: А Н а Расстояние от точки до прямой, не содержащей эту точку, есть длина перпендикуляра, проведенного из этой точки на прямую. 1) Как длину отрезка перпендикуляра, если удается включить этот отрезок в некоторый треугольник в качестве одной из высот; Расстояние от точки до прямой можно вычислить: 2) Используя координатно – векторный метод;
А а Повторение: Отрезок АН – перпендикуляр Точка Н – основание перпендикуляра Отрезок АМ – наклонная Точка М – основание наклонной Отрезок МН – проекция наклонной на прямую а Из всех расстояний от точки А до различных точек прямой а наименьшим является длина перпендикуляра.
В единичном кубе АВСДА1В1С1Д1 найдите расстояние от точки А до прямой ВД1. № 1 1 1 1 1 М 1) Построим плоскость AD1В, проведем из точки А перпендикуляр. АМ – искомое расстояние. 2) Найдем искомое расстояние через вычисление площади треугольника AD1В.
В единичном кубе АВСДА1В1С1Д1 найдите расстояние от точки В до прямой ДА1. № 2 Данный чертеж не является наглядным для решения данной задачи Попробуем развернуть куб …
В единичном кубе АВСДА1В1С1Д1 найдите расстояние от точки В до прямой ДА1. № 2 1) Построим плоскость DВA1, проведем из точки В перпендикуляр. ВМ – искомое расстояние. М Решить самостоятельно ….. 1 1 1 1 1
В правильной треугольной призме АВСА1В1С1 , все ребра которой равны 1, найдите расстояние от точки В до прямой АС1. № 3 1 1 1 1 1 1) Построим плоскость АВС1, проведем из точки В перпендикуляр. ВМ – искомое расстояние. М Решить самостоятельно …..
В правильной шестиугольной пирамиде SАВСDЕF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки S до прямой ВF. № 4 1 1 1 2 2 М 1) Построим плоскость FSВ, проведем из точки S перпендикуляр. SМ – искомое расстояние. Подсказка: а) FАВ = 1200 б) Рассмотреть прямоугольный ∆АВМ
В правильной шестиугольной пирамиде SАВСDЕF, стороны основания которой равны 1, а боковые ребра равны 2, найдите расстояние от точки F до прямой ВG, где G – середина ребра SC. № 5 1 1 1 2 2 М 1) Построим плоскость FВG, проведем из точки F перпендикуляр. FМ – искомое расстояние. G
В правильной шестиугольной призме А…..F1, все ребра которой равны 1, найдите расстояние от точки В до прямой А1D1. № 6 1 1 1 1 М 1) Построим плоскость ВА1D1, проведем из точки В перпендикуляр. ВМ – искомое расстояние. Решить самостоятельно …..
В правильной шестиугольной призме А…..F1, все ребра которой равны 1, найдите расстояние от точки А до прямой F1D1. № 7 1 1 1 1 1) Построим плоскость АF1D1, так как прямая F1D1 перпендикулярна плоскости АFF1, то отрезок АF1 будет искомым перпендикуляром. Решить самостоятельно …..
В правильной шестиугольной призме А…..F1, все ребра которой равны 1, найдите расстояние от точки В до прямой А1F1. № 8 1 1 1 1 М 1) Построим плоскость ВА1F1, проведем из точки В перпендикуляр. ВМ – искомое расстояние. А Решить самостоятельно … Н
В единичном кубе АВСДА1В1С1Д1 найдите расстояние от точки А до прямой: а) В1Д1; б) А1С Домашнее задание В правильной шестиугольной призме АВСДЕFА1В1С1Д1Е1F1, все ребра которой равны 1, найдите расстояние от точки А до прямой: а) ДЕ; б) Д1Е1; в) В1С1; г) ВЕ1.
















