Презентация - "Функция y = k√x . Подкоренная функция"

- Презентации / Презентации по Алгебре
- 1
- 15.10.20
Просмотреть и скачать презентацию на тему "Функция y = k√x . Подкоренная функция"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Функция y = k√x . Подкоренная функция", чтобы сделать обучение более организованным, интересным и результативным.
Вспомним, что такое функция? Функция – это закон соответствия между множествами X и Y, по которому для каждого элемента из множества X можно найти один и только один элемент из множества Y По другому, функция – это зависимость двух переменных X и Y
Определение Подкоренная функция – это функция вида y = k√x , где y и x – зависимые переменные, а k – свободный коэффициент.
Область определения и область значения функции y = k√x Область определения D(y) – это множество, на котором задаётся функция. D(y) - луч [0;+∞) Область значения E(y) - множество значений, которые принимает функция в результате ее применения. E(y) – луч [0; +∞) *При условии, что k>0
Свойства функции y = k√x Свойство 1. y=0 при x=0; y>0 при x>0. Свойство 2. Функция возрастает на луче [0; +∞) Свойство 3. yнаим = 0 (достигается при x=0), yнаиб не существует. Свойство 4. y = k√x - непрерывная функция. *При условии, что k>0
График функции y = k√x, при k>0 Графиком функции y = k√x является кривая, с началом в точке (0;0) Заметим, что функция y = k√x выпукла вверх.
Сделаем выводы При k 0. 2. Функция убывает на луче [0; +∞]. 3. унаиб= 0 (достигается при х = 0), унаим не существует. 4. Функция непрерывна на луче [0; +∞] 5. E(y)- луч (-∞;0)
Рассмотрим график функции y = √x + m, где m = 1. Создадим опорную таблицу: Строим график (см. 11 слайд) Видим, что график имеет начало в точке (0;1). Следовательно, коэффициент m показывает, насколько ед. отрезков вверх(или вниз) график функции y = √x сдвинется по оси Oy . x 0 1 4 9 y 1 2 3 4
Рассмотрим график функции y = √(x + n), где n=1. Создадим опорную таблицу: Видим, что график имеет начало в точке (-1;0) Следовательно, коэффициент n показывает, насколько ед. отрезков влево(или вправо) график функции y= √ x сместится по оси Ox Заметим , если n>0, график смещается влево; если n
Рассмотрим график функции y = √(x + n) + m, где n=1 , m=-1 Создадим опорную таблицу : Видим, что график имеет начало в точке: (-1;-1).Следовательно, коэффициенты n и m показывают, как сместился график y= √ x , одновременно по осям Ox и Oy соответственно. x -1 0 3 8 y -1 0 1 2
Построить график функции y = √(x + n) + m , можно не только по опорной таблице , но и по контрольным точкам , сместив координатную прямую по осям Ox и Oy. Так, например, график функции y = √(x + 2) -3 можно построить сместив ось Ox на 2 ед. отрезка вверх по оси Oy, а ось Oy сместив на 3 ед . отрезков вправо по оси Ox. После чего, в новой системе координат построить график y√x по контрольным точкам.








![Сделаем выводы При k 0. 2. Функция убывает на луче [0; +∞]. 3. унаиб= 0 (достигается при х = 0), уна Сделаем выводы При k 0. 2. Функция убывает на луче [0; +∞]. 3. унаиб= 0 (достигается при х = 0), уна](https://vvoqhuz9dcid9zx9.redirectto.cc/s11/4/4/1/9/4/9.jpg)






