Презентация - "Предел функции в точке"

- Презентации / Презентации по Алгебре
- 0
- 14.10.20
Просмотреть и скачать презентацию на тему "Предел функции в точке"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Предел функции в точке", чтобы сделать обучение более организованным, интересным и результативным.
Отличие – поведение в точке х = а f(a) – не существует, т.к. в точке х =а функция у = f(х) не определена f(a) существует, но отличается от b f(a) = b * *
Определение. Функцию у = f(х) называют непрерывной в точке х = а, если выполняется соотношение Если выражение f(х) составлено из рациональных, иррациональных, тригонометрических и обратных тригонометрических выражений, то функция у = f(х) непрерывна в любой точке , в которой определено выражение f(х). * * Функцию у = f(х) называют непрерывной на промежутке Х, если она непрерывна в каждой точке промежутка.
Если , , то Предел суммы равен сумме пределов. + = b+c 2. Предел произведения равен произведению пределов = b • c 3. Предел частного равен частному пределов (с 0) = b/c 4. Правила вычисления пределов. * *
В классе: №39.23(а,б)- №39.25(а,б); № 39.29(а,б) Дома: №39.23(в,г); № 39.27(в,г); №39.29(в) * *






