Презентация - "Степенная функция (11 класс)"

- Презентации / Презентации по Алгебре
- 1
- 13.10.20
Просмотреть и скачать презентацию на тему "Степенная функция (11 класс)"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Степенная функция (11 класс)", чтобы сделать обучение более организованным, интересным и результативным.
Цели урока: Ввести понятие степенной функции Построить графики степенной функции? Сдвиг графика вдоль осей координат. -Рассмотреть свойства степенной функции в зависимости от значения показателя степени.
Все эти функции являются частными случаями степенной функции у = хr, где r – заданное действительное число Свойства и график степенной функции зависят от свойств степени с действительным показателем, и в частности от того, при каких значениях х и r имеет смысл степень хr.
Показатель р = 2r – четное натуральное число 1 0 х у у = х2, у = х4 , у = х6, у = х8, … у = х2 Функция у=х2n четная, т.к. (–х)2n = х2n Область определения функции – значения, которые может принимать переменная х Область значений функции – множество значений, которые может принимать переменная у График четной функции симметричен относительно оси Оу. График нечетой функции симметричен относительно начала координат – точки О.
Показатель r = 2n-1 – нечетное натуральное число 1 х у у = х3, у = х5, у = х7, у = х9, … у = х2 Функция у=х2n-1 нечетная, т.к. (–х)2n-1 = – х2n-1 0
Показатель r = – 2n, где n – натуральное число 1 0 х у у = х-2, у = х-4 , у = х-6, у = х-8, … Функция у=х2n четная, т.к. (–х)-2n = х-2n
Показатель r = – (2n-1), где n – натуральное число 1 0 х у у = х-3, у = х-5 , у = х-7, у = х-9, … Функция у=х-(2n-1) нечетная, т.к. (–х)–(2n-1) = –х–(2n-1)
0 Показатель r – положительное действительное нецелое число 1 х у у = х1,3, у = х0,7, у = х2,12, …
0 Показатель r – отрицательное действительное нецелое число 1 х у у = х-1,3, у = х-0,7, у = х-2,12, …
Пользуясь рисунком, найти промежутки, на которых график функции лежит выше (ниже) графика функции у = х. 0 1 х у у=х
Пользуясь рисунком, найти промежутки, на которых график функции лежит выше (ниже) графика функции у = х. у 0 1 х у=х
Пользуясь рисунком, найти промежутки, на которых график функции лежит выше (ниже) графика функции у = х.


























