Школа » Презентации » Презентации по Алгебре » Решение простейших тригонометрических уравнений

Презентация - "Решение простейших тригонометрических уравнений"

0
13.10.20
На нашем сайте презентаций klass-uchebnik.com вы можете бесплатно ознакомиться с полной версией презентации "Решение простейших тригонометрических уравнений". Учебное пособие по дисциплине - Презентации / Презентации по Алгебре, от атора . Презентации нашего сайта - незаменимый инструмент для школьников, здесь они могут изучать и просматривать слайды презентаций прямо на сайте на вашем устройстве (IPhone, Android, PC) совершенно бесплатно, без необходимости регистрации и отправки СМС. Кроме того, у вас есть возможность скачать презентации на ваше устройство в формате PPT (PPTX).
Решение простейших тригонометрических уравнений 📚 Учебники, Презентации и Подготовка к Экзаменам для Школьников на Klass-Uchebnik.com

0
0
0

Поделиться презентацией "Решение простейших тригонометрических уравнений" в социальных сетях: 

Просмотреть и скачать презентацию на тему "Решение простейших тригонометрических уравнений"

Воробьев Леонид Альбертович, г.Минск Алгебра и начала анализа, 10 класс. Решение простейших тригоном
1 слайд

Воробьев Леонид Альбертович, г.Минск Алгебра и начала анализа, 10 класс. Решение простейших тригонометрических уравнений.

Под простейшими тригонометрическими уравнениями понимают уравнения вида: ,где x – выражение с переме
2 слайд

Под простейшими тригонометрическими уравнениями понимают уравнения вида: ,где x – выражение с переменной, a .

x y 1 0 Масштаб :3 −1 Рассмотрим решение уравнения sinx=a с помощью графического способа решения. Дл
3 слайд

x y 1 0 Масштаб :3 −1 Рассмотрим решение уравнения sinx=a с помощью графического способа решения. Для этого нам надо найти абсциссы точек пересечения синусоиды y=sinx и прямой y=a. Сразу же изобразим синусоиду. I случай: a [–1;1] Очевидно, что в этом случае точек пересечения нет и поэтому уравнение корней не имеет! y=a, a>1 y=a, a

x y 1 0 Масштаб :3 −1 II случай: a [–1;1] Очевидно, что в этом случае точек пересечения бесконечно м
4 слайд

x y 1 0 Масштаб :3 −1 II случай: a [–1;1] Очевидно, что в этом случае точек пересечения бесконечно много, причем их абсциссы определяются следующим образом: a 1) Рассмотрим точку, абсцисса которой попадает на отрезок . 2) Абсцисса этой точки – есть число(угол в радианной мере), синус которого равен a, т.е. значение этого числа равно arcsina. 3) Абсцисса второй точки, попадающей на отрезок [– ; ], равна ( –arcsina). Для объяснения этого достаточно вспомнить, что sinx=sin( –x). 4) Все остальные абсциссы точек пересечения получаются из этих двух добавлением к ним чисел вида 2 n, где n (ведь мы помним свойство периодичности функции y=sinx). Задание: назовите, какие абсциссы «улетевших» за край чертежа двух точек? Ответ: (arcsina+2π) и (3π – arcsina).

x y 1 0 Масштаб :3 −1 a Таким образом, все корни в этом случае можно записать в виде совокупности: И
5 слайд

x y 1 0 Масштаб :3 −1 a Таким образом, все корни в этом случае можно записать в виде совокупности: Или, принято эти две записи объединять в одну (подумайте, как это обосновать):

x y 1 0 Масштаб :3 −1 III случай: a= –1; 0 или 1. Эти три значения – особые! Для них общая формула к
6 слайд

x y 1 0 Масштаб :3 −1 III случай: a= –1; 0 или 1. Эти три значения – особые! Для них общая формула корней, выведенная нами в предыдущем случае не годится. Проследите самостоятельно за выводом в каждом отдельном случае. y=1 y=0 y=–1 Запомните эти три особых случая!

x y 1 0 Масштаб :3 −1 Решение уравнения cosx=a рассмотрим тем же графическим способом. Для этого нам
7 слайд

x y 1 0 Масштаб :3 −1 Решение уравнения cosx=a рассмотрим тем же графическим способом. Для этого нам надо найти абсциссы точек пересечения косинусоиды y=cosx и прямой y=a. Сразу же изобразим косинусоиду. I случай: a [–1;1] Очевидно, что в этом случае точек пересечения нет и поэтому уравнение корней не имеет! y=a, a>1 y=a, a

x y 1 0 Масштаб :3 −1 II случай: a [–1;1] Очевидно, что в этом случае точек пересечения бесконечно м
8 слайд

x y 1 0 Масштаб :3 −1 II случай: a [–1;1] Очевидно, что в этом случае точек пересечения бесконечно много, причем их абсциссы определяются следующим образом: 2) Абсцисса этой точки – есть число(угол в радианной мере), косинус которого равен a, т.е. значение этого числа равно arccosa. 3) Абсцисса второй точки, попадающей на отрезок [– ; 0], равна –arccosa. Для объяснения этого достаточно вспомнить, что cosx=cos(–x). 4) Все остальные абсциссы точек пересечения получаются из этих двух добавлением к ним чисел вида 2 n, где n .

Таким образом, все корни в этом случае можно записать в виде совокупности: Или, принято эти две запи
9 слайд

Таким образом, все корни в этом случае можно записать в виде совокупности: Или, принято эти две записи объединять в одну: x y 1 0 Масштаб :3 −1

III случай: a= –1; 0 или 1. Эти три значения – особые! Для них общая формула корней, выведенная нами
10 слайд

III случай: a= –1; 0 или 1. Эти три значения – особые! Для них общая формула корней, выведенная нами в предыдущем случае не годится. Проследите самостоятельно за выводом в каждом отдельном случае. Запомните эти три особых случая! x y 1 0 Масштаб :3 −1 y=1 y=0 y=–1

0 y 1 x −1 Решение уравнения tgx=a исследуйте самостоятельно: a
11 слайд

0 y 1 x −1 Решение уравнения tgx=a исследуйте самостоятельно: a

0 y 1 x −1 Масштаб :3 Решение уравнения сtgx=a исследуйте самостоятельно: a
12 слайд

0 y 1 x −1 Масштаб :3 Решение уравнения сtgx=a исследуйте самостоятельно: a

Решение любых тригонометрических уравнений сводится к решению рассмотренных выше простейших тригоном
13 слайд

Решение любых тригонометрических уравнений сводится к решению рассмотренных выше простейших тригонометрических уравнений. Для этого применяются тождественные преобразования, изученные Вами ранее: различные тригонометрические формулы, различные способы решения алгебраических уравнений, формулы сокращенного умножения и т.д.. Итак, запомним:

Комментарии (0) к презентации "Решение простейших тригонометрических уравнений"