Презентация - "Дифуры 1го порядка"

0
13.10.20
На нашем сайте презентаций klass-uchebnik.com вы можете бесплатно ознакомиться с полной версией презентации "Дифуры 1го порядка". Учебное пособие по дисциплине - Презентации / Презентации по Алгебре, от атора . Презентации нашего сайта - незаменимый инструмент для школьников, здесь они могут изучать и просматривать слайды презентаций прямо на сайте на вашем устройстве (IPhone, Android, PC) совершенно бесплатно, без необходимости регистрации и отправки СМС. Кроме того, у вас есть возможность скачать презентации на ваше устройство в формате PPT (PPTX).
Дифуры 1го порядка 📚 Учебники, Презентации и Подготовка к Экзаменам для Школьников на Klass-Uchebnik.com

0
0
0

Поделиться презентацией "Дифуры 1го порядка" в социальных сетях: 

Просмотреть и скачать презентацию на тему "Дифуры 1го порядка"

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО
1 слайд

ДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ 1-ГО ПОРЯДКА ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО

Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного и
2 слайд

Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Придётся много интегрировать. И дифференцировать.

Встречаются 3 типа дифференциальных уравнений первого порядка: Уравнения с разделяющимися переменным
3 слайд

Встречаются 3 типа дифференциальных уравнений первого порядка: Уравнения с разделяющимися переменными, Однородные уравнения, Линейные неоднородные уравнения,

Сначала вспомним обычные уравнения Они содержат переменные и числа
4 слайд

Сначала вспомним обычные уравнения Они содержат переменные и числа

Что значит решить обычное уравнение? Это значит, найти множество чисел, которые удовлетворяют данном
5 слайд

Что значит решить обычное уравнение? Это значит, найти множество чисел, которые удовлетворяют данному уравнению

Диффуры устроены примерно так же Дифференциальное уравнение первого порядка в общем случае содержит:
6 слайд

Диффуры устроены примерно так же Дифференциальное уравнение первого порядка в общем случае содержит: независимую переменную зависимую переменную (функцию) первую производную функции

Что значит решить дифференциальное уравнение? В некоторых уравнениях 1-го порядка может отсутствоват
7 слайд

Что значит решить дифференциальное уравнение? В некоторых уравнениях 1-го порядка может отсутствовать «икс» или (и) «игрек», но это не существенно – важно чтобы в ДУ была первая производная , и не было производных высших порядков – ,  и т.д.

Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют
8 слайд

Решить дифференциальное уравнение – это значит, найти множество всех функций, которые удовлетворяют данному уравнению. Такое множество функций часто имеет вид ( – произвольная постоянная), который называется общим решением дифференциального уравнения.

Пример Решить дифференциальное уравнение Полный боекомплект. С чего начать решение? В первую очередь
9 слайд

Пример Решить дифференциальное уравнение Полный боекомплект. С чего начать решение? В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение , которое многим из вас наверняка казалось нелепым и ненужным. В диффурах рулит именно оно! Итак:

На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говор
10 слайд

На втором шаге смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки», а в правой части организовать только «иксы». Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п. Дифференциалы  и  – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы». Следующий эта
11 слайд

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы». Следующий этап – интегрирование дифференциального уравнения. Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:
12 слайд

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  дос
13 слайд

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу  достаточно записать один раз (т.к. константа + константа всё равно равна другой константе). В большинстве случаев её помещают в правую часть. Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решённым. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде.  Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения. То есть,  – это общий интеграл. Ответ в такой форме вполне приемлем, но нет ли варианта получше? Давайте попытаемся получить общее решение. Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях: если в правой части после интегрирования появляется логарифм, то константу во многих случаях (но далеко не всегда!) тоже целесообразно записать под логарифмом.

То есть, ВМЕСТО записи обычно пишут: Используем свойство логарифмов и получаем: Теперь логарифмы и м
14 слайд

То есть, ВМЕСТО записи обычно пишут: Используем свойство логарифмов и получаем: Теперь логарифмы и модули можно убрать: Ответ: общее решение:

Спасибо за внимание Выполнил: ст.гр. СО-11 Макаренко Н.Н.
15 слайд

Спасибо за внимание Выполнил: ст.гр. СО-11 Макаренко Н.Н.

Комментарии (0) к презентации "Дифуры 1го порядка"