Презентация - "Презентация по физике за 9 класс "Дифракция света""

- Презентации / Другие презентации
- 0
- 10.11.25
Просмотреть и скачать презентацию на тему "Презентация по физике за 9 класс "Дифракция света""
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Презентация по физике за 9 класс "Дифракция света"", чтобы сделать обучение более организованным, интересным и результативным.
Характерным проявлением волновых свойств света
является дифракция света — отклонение от прямолинейного распространения
на резких неоднородностях среды
Дифракция была открыта
Франческо Гримальди в конце XVII в.
Объяснение явления дифракции света дано Томасом Юнгом и Огюстом Френелем, которые не только дали описание экспериментов по наблюдению явлений интерференции и дифракции света, но и объяснили свойство прямолинейности распространения света с позиций волновой теории
Принцип
Гюйгенса — Френеля
Для вывода законов отражения и преломления мы использовали принцип Гюйгенса. Френель дополнил его формулировку для объяснения явления дифракции
Определите, какое дополнение ввел Френель?
Принцип
Гюйгенса:
каждая точка волновой поверхности является источником вторичных сферических волн
Принцип
Гюйгенса-Френеля:
каждая точка волновой поверхности является источником вторичных сферических волн,
которые интерферируют между собой
Задание:
Будет ли вид дифракционной картины зависеть от длины волны (цвета)?
Как будет выглядеть дифракционная картина в белом свете?
Дифракция от различных препятствий:
а) от тонкой проволочки;
б) от круглого отверстия;
в) от круглого непрозрачного экрана.
Зоны Френеля
Для того чтобы найти амплитуду световой волны от точечного монохроматического источника света А в произвольной точке О изотропной среды, надо источник света окружить сферой радиусом r=ct
Зоны Френеля
Интерференция волны от вторичных источников, расположенных на этой поверхности, определяет амплитуду в рассматриваемой точке P,
т. е. необходимо произвести сложение когерентных колебаний от всех вторичных источников на волновой поверхности
Зоны Френеля
Так как расстояния от них до точки О различны, то колебания будут приходить в различных фазах.
Наименьшее расстояние от точки О до волновой поверхности В равно r0
Зоны Френеля
Первая зона Френеля ограничивается точками волновой поверхности, расстояния от которых до точки О равны:
где — длина световой волны
Интерференционные экстремумы
Если разность хода от двух соседних зон равна половине длины волны, то колебания от них приходят в точку О в противоположных фазах и наблюдается интерференционный минимум, если разность хода равна длине волны, то наблюдается интерференционный максимум
Темные и светлые пятна
Таким образом, если на препятствии укладывается целое число длин волн, то они гасят друг друга и в данной точке наблюдается минимум (темное пятно). Если нечетное число полуволн, то наблюдается максимум (светлое пятно)
Условия наблюдения дифракции
Дифракция происходит на предметах любых размеров, а не только соизмеримых с длиной волны
Условия наблюдения дифракции
Трудности наблюдения заключаются в том, что вследствие малости длины световой волны интерференционные максимумы располагаются очень близко друг к другу, а их интенсивность быстро убывает
Границы применимости
геометрической оптики
Дифракция наблюдается хорошо на расстоянии
Если , то дифракция невидна и получается резкая тень (d - диаметр экрана).
Эти соотношения определяют границы применимости геометрической оптики
Границы применимости
геометрической оптики
Если наблюдение ведется на расстоянии , где d—размер предмета, то начинают проявляться волновые свойства света
Соотношения длины волны и размера препятствия
На рис. показана примерная зависимость результатов опыта по распространению волн в зависимости от соотношения размеров препятствия и длины волны.
Интерференционные картины
от разных точек предмета перекрываются, и изображение смазывается, поэтому прибор не выделяет отдельные детали предмета. Дифракция устанавливает предел разрешающей способности любого оптического прибора
Разрешающая способность
человеческого глаза
приблизительно равна одной угловой минуте:
где D — диаметр зрачка; телескопа =0,02'';
у микроскопа увеличение не более 2.103 раз.
Можно видеть предметы, размеры которых
соизмеримы с длиной световой волны
Дифракционная решетка
Дифракционные решетки, представляющие собой точную систему штрихов некоторого профиля, нанесенную на плоскую или вогнутую оптическую поверхность, применяются в спектральном приборостроении, лазерах, метрологических мерах малой длины и т.д
Дифракционная решетка
Величина d = a + b называется постоянной (периодом) дифракционной решетки, где а — ширина щели; b — ширина непрозрачной части
Дифракционная решетка
Угол - угол отклонения световых волн вследствие дифракции.
Наша задача - определить, что будет наблюдаться в произвольном направлении - максимум или минимум
Дифракционная решетка
Следовательно:
- формула дифракционной решетки.
Величина k — порядок дифракционного максимума
( равен 0, 1, 2 и т.д.)
Гримальди Франческо
2.IV.1618 - 28.XII.1663
Итальянский ученый. С 1651 года - священник.
Открыл дифракцию света, систематически ее изучал и сформулировал некоторые правила. Описал солнечный спектр, полученный с помощью призмы. В 1662 г. определил величину поверхности Земли.
Френель Огюст Жан (10.V.1788 - 14.VII.1827)
Французский физик. Научные работы посвящены физической оптике.
Дополнил известный принцип Гюйгенса, введя так называемые зоны Френеля (принцип Гюйгенса - Френеля). Разработал в 1818 году теорию дифракции света
Юнг Томас
13.IV.1773-10.V.1829
Английский ученый. Полиглот. Научился читать в 2 года. Объяснил аккомодацию глаза, обнаружил интерференцию звука, объяснил интерференцию света, и ввел этот термин. Измерил длины волн световых лучей. Исследовал деформацию
Араго Доменик Франсуа
(26.II.1786-2.X.1853)
Французский физик и политический деятель. Автор многих открытий по оптике и электромагнетизму: хроматическую поляризацию света, вращение плоскости поляризации, намагничивание железных опилок вблизи проводника с током. Установил связь полярных сияний с магнитными бурями. По его указаниями А.Физо и У.Фуко измерили скорость света, а У.Леверье открыл планету Нептун
Фраунгофер Йозеф
(6.III.1787- 7.VI.1826)
Немецкий физик.
Научные работы относятся к физической оптике. Внёс существенный вклад в исследование дисперсии и создание ахроматических линз. Фраунгофер изучал дифракцию в параллельных лучах (так называемая дифракция Фраунгофера).Сначала от одной щели, а потом от многих. Большой заслугой учёного является использование(с 1821 года) дифракционных решеток для исследования спектров (некоторые исследователи считают его даже изобретателем первой дифракционной решетки)
Пуассон Семион Дени (21.VI.1781 - 25.IV.1840)
Французский механик, математик, физик, член Парижской академии наук (с 1812 года). Физические исследования относятся к магнетизму, капиллярности, теории упругости, гидромеханике, теории колебаний, теории света. Член Петербургской академии наук (с 1826 года)





















































