Школа » Презентации » Презентации по Математике » Эта загадочная Бутылка Клейна

Презентация - "Эта загадочная Бутылка Клейна"

0
14.10.20
На нашем сайте презентаций klass-uchebnik.com вы можете бесплатно ознакомиться с полной версией презентации "Эта загадочная Бутылка Клейна". Учебное пособие по дисциплине - Презентации / Презентации по Математике, от атора . Презентации нашего сайта - незаменимый инструмент для школьников, здесь они могут изучать и просматривать слайды презентаций прямо на сайте на вашем устройстве (IPhone, Android, PC) совершенно бесплатно, без необходимости регистрации и отправки СМС. Кроме того, у вас есть возможность скачать презентации на ваше устройство в формате PPT (PPTX).
Эта загадочная Бутылка Клейна 📚 Учебники, Презентации и Подготовка к Экзаменам для Школьников на Klass-Uchebnik.com

0
0
0

Поделиться презентацией "Эта загадочная Бутылка Клейна" в социальных сетях: 

Просмотреть и скачать презентацию на тему "Эта загадочная Бутылка Клейна"

Автор работы: Окунев Дмитрий Олегович, ученик 10 «А» класса МОУ «Гимназия имени А.М. Горького» Моска
1 слайд

Автор работы: Окунев Дмитрий Олегович, ученик 10 «А» класса МОУ «Гимназия имени А.М. Горького» Москаленского муниципального района Омской области «Эта загадочная Бутылка Клейна» (исследовательская работа по математике) Руководитель работы: Фабер Галина Николаевна, учитель математики МОУ «Гимназия имени А.М. Горького» Москаленского муниципального района Омской области

Что такое бутылка Клейна Бутылка Клейна — определенная неориентируемая поверхность первого рода, т.е
2 слайд

Что такое бутылка Клейна Бутылка Клейна — определенная неориентируемая поверхность первого рода, т.е. поверхность, у которой нет различия между внутренней и внешней сторонами, и которая, таким образом, в пространстве ограничивает собой нулевой объем.

История изобретения бутылки Клейна Феликс Христиан Клейн – немецкий математик. Пытаясь доказать непр
3 слайд

История изобретения бутылки Клейна Феликс Христиан Клейн – немецкий математик. Пытаясь доказать непротиворечивость геометрии Лобачевского, изобрёл открытие поразительной красоты - свою бутылку в 1882 г. Это блестящий и очень наглядный пример односторонней поверхности. В ней со всей полнотой проявился и талант математика, и дар выдающегося преподавателя.

Сравнительная характеристика бутылки Клейна и листа Мёбиуса Таким образом, подтверждается выдвинутая
4 слайд

Сравнительная характеристика бутылки Клейна и листа Мёбиуса Таким образом, подтверждается выдвинутая гипотеза. Бутылка Клейна, подобно листу Мёбиуса является топологическим объектом. Значит, бутылка Клейна обладает топологическими свойствами. Бутылка Клейна Лист Мёбиуса 1. Хроматический номер 2. Непрерывность 3. Ориентированность 4. Односторонность

Топологические свойства бутылки Клейна 1.«Хроматический номер» 2. Непрерывность 3. Ориентированность
5 слайд

Топологические свойства бутылки Клейна 1.«Хроматический номер» 2. Непрерывность 3. Ориентированность

Конструирование бутылки Клейна Способ № 1. Получение бутылки Клейна из бумаги. Способ № 2. Получение
6 слайд

Конструирование бутылки Клейна Способ № 1. Получение бутылки Клейна из бумаги. Способ № 2. Получение бутылки Клейна из стандартной пластмассовой бутылки. Способ № 3. Получение бутылки Клейна из одного цилиндра. Способ № 4. Получение бутылки Клейна из ткани. Способ № 5. Получение бутылки Клейна склеиванием двух листов Мёбиуса. Способ № 6. Получение бутылки Клейна из пластилина.

Применение бутылки Клейна Бутылка Клейна и изготовление стёкол Бутылку Клейна могут изготовить тольк
7 слайд

Применение бутылки Клейна Бутылка Клейна и изготовление стёкол Бутылку Клейна могут изготовить только высококвалифицированные стеклодувы. Но и они не смогут её изготовить в подлинном виде, так как место самопересечения будет запаяно. Но, не смотря на это, они отливают бутылки в качестве сувениров и даже соревнуются, у кого лучше и больше получилась бутылка.

Выступление в классе Работа учащихся с моделями бутылки Клейна Демонстрация свойств бутылки Клейна
8 слайд

Выступление в классе Работа учащихся с моделями бутылки Клейна Демонстрация свойств бутылки Клейна

Комментарии (0) к презентации "Эта загадочная Бутылка Клейна"