Презентация - "Численное интегрирование"

- Презентации / Презентации по Математике
- 0
- 14.10.20
Просмотреть и скачать презентацию на тему "Численное интегрирование"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Численное интегрирование", чтобы сделать обучение более организованным, интересным и результативным.
Если функция f(x) непрерывна на отрезке то определенный интеграл от этой функции в пределах от a до b существует и имеет вид
Найти определенный интеграл на отрезке если подынтегральная функция на отрезке задана таблично. Формулы приближенного интегрирования называются квадратурными формулами. Задача численного интегрирования
Метод прямоугольников основан на непосредственном определении интеграла: где - интегральная сумма, соответствующая некоторому разбиению отрезка и некоторому выбору точек , ,…, на отрезках разбиения
Вычисление определенного интеграла геометрически сводится к вычислению площади криволинейной трапеции, ограниченной функцией f(x), осью абсцисс и прямыми x = a и x = b.
Для увеличения точности численного интегрирования можно отрезок разбить на несколько частей и для каждой из них вычислить приближенное значение площади криволинейной трапеции, основанием которой является отрезок (i = 0, 1, …,n – 1), а высотой число т.е. значение функции в точке
Практически удобно делить отрезок на равные части, а точки (i = 0, 1, …, n – 1) совмещать с левыми или с правыми концами отрезков разбиения.
Если точку совместить с левым концом отрезка то приближенное значение интеграла может быть представлено формулой левых прямоугольников: где – шаг.
Если же в качестве точки выбрать правый конец отрезка то приближенное значение интеграла вычисляется по формуле правых прямоугольников: .
Метод трапеций Заменим на отрезке дугу AB графика подынтегральной функции y = f(x) стягивающей ее хордой и вычислим площадь трапеции ABba. Примем значение определенного интеграла численно равным площади этой трапеции: Это и есть формула трапеций
Если отрезок разделить на несколько частей и применить формулу трапеции к каждому отрезку Тогда
Для простоты вычислений удобно разделить отрезок на равные части, в этом случае длина каждого из отрезков разбиения есть Численное значение интеграла на отрезке равно
А на всем отрезке соответственно Эта формула называется общей формулой трапеции. Ее можно переписать в виде где – шаг.
функцию y = f(x) на отрезке заменяем квадратичной функцией, принимающей в узлах , , значения , и В качестве интерполяционного многочлена воспользуемся многочленом Ньютона
Для увеличения точности вычислений отрезок разбивают на n пар участков и заменяя подынтегральную функцию интерполяционным многочленом Ньютона второй степени, получают приближенное значение интеграла на каждом участке длины 2h:























