Презентация - "Теорема Виета"

0
13.10.20
На нашем сайте презентаций klass-uchebnik.com вы можете бесплатно ознакомиться с полной версией презентации "Теорема Виета". Учебное пособие по дисциплине - Презентации / Презентации по Математике, от атора . Презентации нашего сайта - незаменимый инструмент для школьников, здесь они могут изучать и просматривать слайды презентаций прямо на сайте на вашем устройстве (IPhone, Android, PC) совершенно бесплатно, без необходимости регистрации и отправки СМС. Кроме того, у вас есть возможность скачать презентации на ваше устройство в формате PPT (PPTX).
Теорема Виета Учебники, Презентации и Подготовка к Экзаменам для Школьников на Klass-Uchebnik.com

0
0
0

Поделиться презентацией "Теорема Виета" в социальных сетях: 

Просмотреть и скачать презентацию на тему "Теорема Виета"

Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.

Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.

Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Теорема Виета", чтобы сделать обучение более организованным, интересным и результативным.

Теорема Виета
1 слайд

Теорема Виета

Квадратное уравнение Квадратным уравнением называется уравнение вида ax2+bx+c=0, где a, b, с R (a 0)
2 слайд

Квадратное уравнение Квадратным уравнением называется уравнение вида ax2+bx+c=0, где a, b, с R (a 0). Числа a, b, с носят следующие названия: a - первый коэффициент, b - второй коэффициент, с - свободный член.

Приведенное уравнение Если в уравнении вида: ax2+bx+c=0, где a, b, с R а = 1, то квадратное уравнени
3 слайд

Приведенное уравнение Если в уравнении вида: ax2+bx+c=0, где a, b, с R а = 1, то квадратное уравнение вида x2+px+q=0 называется приведенным.

Теорема Виета Сумма корней приведенного квадратного трехчлена x2 + px + q = 0  равна его второму коэ
4 слайд

Теорема Виета Сумма корней приведенного квадратного трехчлена x2 + px + q = 0  равна его второму коэффициенту p с противоположным знаком, а произведение – свободному члену q. Т. е.  x1 + x2 = – p  и   x1 x2 = q

Применение теоремы Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена,
5 слайд

Применение теоремы Виета Теорема Виета замечательна тем, что, не зная корней квадратного трехчлена, мы легко можем вычислить их сумму и произведение, то есть простейшие симметричные выражения x1 + x2 и x1 x2.

Вычисление корней Так, еще не зная, как вычислить корни уравнения: x2 + 2x – 8 = 0, мы, тем не менее
6 слайд

Вычисление корней Так, еще не зная, как вычислить корни уравнения: x2 + 2x – 8 = 0, мы, тем не менее, можем сказать, что их сумма должна быть равна – 2, а произведение должно равняться –8.

Пример Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадра
7 слайд

Пример Теорема Виета позволяет угадывать целые корни квадратного трехчлена. Так, находя корни квадратного уравнения x2 – 7x + 10 = 0, можно начать с того, чтобы попытаться разложить свободный член (число 10) на два множителя так, чтобы их сумма равнялась бы числу 7.

Решение Это разложение очевидно: 10 = 5 × 2, 5 + 2 = 7. Отсюда должно следовать, что числа 2 и 5 явл
8 слайд

Решение Это разложение очевидно: 10 = 5 × 2, 5 + 2 = 7. Отсюда должно следовать, что числа 2 и 5 являются искомыми корнями.

Комментарии (0) к презентации "Теорема Виета"