Презентация - "Проверка статистических гипотез"

- Презентации / Презентации по Математике
- 2
- 13.10.20
Просмотреть и скачать презентацию на тему "Проверка статистических гипотез"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Проверка статистических гипотез", чтобы сделать обучение более организованным, интересным и результативным.
Критерий согласия хи-квадрат Пирсона Разработан первоначально для дискретных распределений: Статистический ряд: * Нулевая гипотеза: исследуемая случайная величина имеет заданный закон распределения.
* Статистика критерия: Является мерой близости теоретических вероятностей Рl и эмпирических (экспериментальных) частот vl Имеет асимптотическое (при n -->oo ) распределение хи-квадрат. Число степеней свободы равно: L-1, если распределение полностью задано. L - 1 - r, если дополнительно оценивается r неизвестных параметров распределения.
* Для нахождения критической области необходимо по заданной вероятности ошибки первого рода (уровню значимости критерия) найти квантиль хи-квадрат распределения на уровне 1- .
* Подсчитываем значение статистики критерия и сравниваем его с критической точкой. Если То нулевая гипотеза отвергается. В противном случае она принимается на уровне значимости Критерий легко приспосабливается и для непрерывных распределений путем их дискретизации. Проверку гипотезы удобно совмещать с построением гистограмм.
Пять шагов проверки гипотезы 1. Сформулировать нулевую H0 и альтернативную H1 гипотезы. 2. Выбрать статистику критерия T(X) и уяснить её закон распределения. 3. Задать уровень значимости критерия. По таблицам квантилей распределения статистики найти критические точки и указать критическую область. 4. Подсчитать значение статистики критерия и проверить условие попадания в критическую область. 5. Сделать вывод о принятии нулевой или альтернативной гипотезы. *
Простейшие параметрические гипотезы Гипотезы о среднем значении гауссовской случайной величины Дано: Проведено две серии независимых испытаний одинакового объема, по результатам которых получены оценки математического ожидания a0 и a1. Проверить нулевую гипотезу: a0 = a1 . *








