Презентация - "Цилиндр"

- Презентации / Презентации по Математике
- 0
- 13.10.20
Просмотреть и скачать презентацию на тему "Цилиндр"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Цилиндр", чтобы сделать обучение более организованным, интересным и результативным.
Что такое цилиндр? Цилиндр (круговой цилиндр) – тело, которое состоит из двух кругов, совмещаемых параллельным переносом, и всех отрезков, соединяющих соответствующие точки этих кругов. Круги называются основаниями цилиндра, а отрезки, соединяющие соответствующие точки окружностей кругов, – образующими цилиндра
Площадь цилиндра (прямой круговой) Площадь боковой поверхности цилиндра можно вычислить, умножив длину образующей на периметр сечения цилиндра плоскостью, перпендикулярной образующей (основание). Sb = Ph P = 2πR Sb = 2πRh. Площадь полной поверхности цилиндра равна сумме площадей его боковой поверхности и его оснований. Sp = 2πRh + 2πR2 = 2πR(h + R)
Площадь цилиндра (наклонный круговой) Для расчета площади боковой поверхности наклонного цилиндра потребуется перемножить значения образующей и периметра сечения, которое будет перпендикулярно выбранной образующей. Sбок= х Р, где х — длина образующей цилиндра, Р — периметр сечения. Сечение, кстати, лучше выбирать такое, чтобы оно образовывало эллипс. Тогда будут упрощены расчеты его периметра. Длина эллипса вычисляется по формуле, которая дает приблизительный ответ. l = π (а + в), где «а» и «в» — полуоси эллипса, то есть расстояния от центра до ближайшей и самой дальней его точек. Площадь всей поверхности нужно вычислять с помощью такого выражения: Sпол = 2 π r^2 + х Р
Объём цилиндра (прямой круговой) Объем цилиндра определяется по стандартной схеме: площадь поверхности основания умножается на высоту.
Объём цилиндра (наклонный круговой) Площадь поверхности основания умножают на расстояние между плоскостями – перпендикулярный отрезок, построенный между ними. Как видно из рисунка, такой отрезок равен произведению длины образующей на синус угла наклона образующей к плоскости.
Скошенный цилиндр Прямой круговой цилиндр со скошенным основанием либо кратко скошенный цилиндр определяют с помощью радиуса основания R, минимальной высоты h1 и максимальной высоты h2.
Где в повседневной жизни встречается цилиндр? Трубы водо- и газопроводные - те же цилиндры, только с большой длиной.
Где в повседневной жизни встречается цилиндр? Гидроцилиндры к машинах и механизмах для подачи жидкостей.
Где в повседневной жизни встречается цилиндр? Круглый стакан, кастрюля, круглая ваза, бутылка - те же цилиндры.

















