Презентация - "Цифровая обработка сигналов"
- Презентации / Презентации по Информатике
- 3
- 14.10.20
Просмотреть и скачать презентацию на тему "Цифровая обработка сигналов"
План лекции Цифровая обработка сигналов: лекция 1 Информационные источники Историческая справка Предмет курса и основные разделы ЦОС Аппаратная и программная реализация алгоритмов
Информационные источники В.В. Крюков. Цифровая обработка сигналов. Конспект лекций. Влад. ВГУЭС. 1998. Крюков В.В., Широбокова К.И. Учебное пособие к лабораторному практикуму по дисциплине.- Влад., ДВГТИ, 1995. Л. Рабинер, Б. Гоулд. Теория и применение цифровой обработки сигналов: Пер. с английского - М.: Мир, 1978. С.Л.Марпл-мл. Цифровой спектральный анализ и его приложения: Пер. с английского - М.: Мир, 1990. У.М. Сиберт. Цепи, сигналы, системы: Перевод с английского - М.: Мир, 1988 г. С.252. Лекции по DSP (Digital Signal Processing), университет Карнеги, кафедра компьютерной техники. http://www.ece.cmu.edu/~ee791/ Лекции по Сбору данных, Спектральному анализу, фильтрам и фильтрации: «Научное и техническое руководство по обработке сигналов» http://www.dspguide.com Курс «Введение в DSP». http://bores.com/courses/intro Курс в Аванте – http://avanta.vvsu.ru Цифровая обработка сигналов: лекция 1
Историческая справка 40-е годы: исследование сотрудниками фирмы Bell Telephone возможности использования цифровых элементов для создания фильтров 50-е годы: в Массачусетском технологическом институте были исследованы принципы дискретизации колебаний и возникающие при этом эффекты, а так же вопросы применения в радиоэлектронике математического аппарата теории Z-преобразования Кайзер (фирма Bell) показал, как можно рассчитывать цифровые фильтры с нужными характеристиками, используя билинейное преобразование 60-е годы: начала формироваться теория цифровой обработки сигналов (ЦОС) 1965 г. - опубликована статья Кули и Тьюки о быстром методе вычисления дискретного преобразования Фурье, давшая мощный толчок развитию этого нового технического направления - цифровой спектральный анализ Цифровая обработка сигналов: лекция 1
Историческая справка 70-е годы: оценены потенциальные возможности интегральных микросхем, что позволило представить полную систему обработки сигналов, для которой наилучшая техническая реализация была бы именно цифровой Современная тенденция развития ЦОС - усилением взаимодействия нескольких областей: анализа сигналов, теории систем, статистических методов и вычислительной математики. Революция в технологии сверхбольших интегральных схем (СБИС) способствовала слиянию областей разработки интегральных схем для вычислительной техники и обработки сигналов В начале 80-х годов фирмами Texas Instruments, IBM, Analog Devices, Motorola, AT&T были выпущены СБИС (их стали называть цифровые процессоры сигналов – DSP, Digital Signal Processing) со специальной архитектурой и набором команд для построения систем цифровой обработки сигналов Цифровая обработка сигналов: лекция 1
Предмет курса Основные преимущества систем ЦОС по сравнению с традиционными аналоговыми устройствами: точность обработки и повторяемость параметров при тиражировании; стабильность характеристик и высокая помехоустойчивость; простота модификации алгоритмов обработки; слабая зависимость цены аппаратной части от сложности алгоритма обработки; простота обслуживания и настройки. Недостатки систем ЦОС: ограниченный частотный диапазон обрабатываемых сигналов; ограниченный динамический диапазон (с появлением 32-х разрядных устройств этот недостаток преодолен); наличие шумов квантования. Цифровая обработка сигналов: лекция 1
Предмет курса Определение. Цифровая обработка сигналов - отдельная область знаний, которая описывает методы сбора и обработки цифровых сигналов, а также способы построения процессорных систем, предназначенных для обработки цифровых сигналов. С практической точки зрения ЦОС - это одна из наиболее мощных технологий, которая будет определять методы сбора и обработки информации, а значит развитие электронной техники в 21 веке. Цифровая обработка сигналов: лекция 1
Направления развития ЦОС развитие эффективных алгоритмов обработки с целью уменьшения времени выполнения операций ЦОС, повышения точности результатов, улучшения качественных характеристик систем ЦОС; развитие операционных сред, в том числе операционных систем реального времени, для решения прикладных задач; внедрение методов ЦОС в изделия массового спроса (мобильная телефония, звуковая и видео запись/воспроизведение, телевизионная техника); создание универсальных ЦОС процессоров с целью внедрения методов ЦОС в коммерческие приложения (телекоммуникация, обработка речи, изображений, сжатие данных, мультимедиа, медицина). Цифровая обработка сигналов: лекция 1
Аппаратная и программная реализация Особенности аппаратной реализации ЦУ: автономность ЦУ; целесообразна при большом количестве изделий; производительность потенциально выше, чем при программной реализации; проблемы с конечной разрядностью операционных устройств. Особенности программной реализации на базе универсальных компьютеров и DSP: гибкость систем; задачи ЦОС решаются комплексно (обработка, хранение результатов, графический анализ); нет проблем с разрядностью операционных устройств Цифровая обработка сигналов: лекция 1
Вводные сведения по комплексной арифметике Квадратный корень от -1 принято обозначать символом j, т.е. Комплексное число c может быть записано в виде c = a + jb, где a и b - вещественная и мнимая части числа c Re [c] = вещественная часть от c = a Im [c] = мнимая часть от c = b Если a, b, g, h являются вещественными числами, то сложение, умножение и деление комплексных чисел (a + jb) и (g + jh) выполняется по следующим формулам (a + jb) + (g + jh) = (a + jb) х (g + jh) = Цифровая обработка сигналов: лекция 1
Вводные сведения по комплексной арифметике Операция комплексного сопряжения и произведение комплексного числа на комплексно сопряженное определяются c* = Re[c] - jIm[c] cc* = (a + jb)(a - jb) = a2 + b2 Комплексное число (a + jb) может быть представлено в полярных координатах r и Цифровая обработка сигналов: лекция 1 c a jb cc a b = + = = + * 2 2 e jx x j x jx = = + exp( ) cos sin ( ) r a jb b a a jb r j = + = + = , arctan exp( ) q q z r j 1 1 1 = exp( ) j z r j 2 2 2 = exp( ) j z r r j = + 1 2 1 2 exp( ( )) j j z z z r r j = = - 1 2 1 2 1 2 exp( ( )) j j ( ) z z * * = z z x + = * 2 z z jy - = * 2 z z y = Ы = * 0 zz z * = 2 z z * = arg arg z z * = - ( ) z z z z 1 2 1 2 + = + * * * ( ) z z z z 1 2 1 2 * * * = ( ) z z z z 1 2 1 2 / / * * * =