Презентация - "развертки координат"

- Презентации / Презентации по Геометрии
- 0
- 14.10.20
Просмотреть и скачать презентацию на тему "развертки координат"
Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.
Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.
Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "развертки координат", чтобы сделать обучение более организованным, интересным и результативным.
Основные положения Развертыванием называется такое преобразование, при котором все точки поверхности совмещаются с плоскостью. Развертка - плоская фигура, получаемая в результате данного преобразования. Поверхности делятся на развертываемые и неразвертываемые. Развертываемые совмещаются с плоскостью без разрывов и складок Для неразвертываемых строятся условные развертки
Развертки прямых круговых конуса и цилиндра Н d Н d Для данных поверхностей строятся точные развертки. Боковая поверхность цилиндра – прямоугольник. Боковая поверхность конуса – круговой сектор d R R
Способ нормального сечения Определяются натуральные величины образующих, если они заданы в общем положении. Строится нормальное сечение (там, где образующие имеют истинную величину) Определяется натуральная величина нормального сечения Строится развертка: периметр нормального сечение «развертывается» в прямую; через его вершины перпендикулярно линии проводятся образующие Применяется для призматических и цилиндрических поверхностей. Нормальное сечение перпендикулярно образующим и определяет расстояние между ними
a2 b2 c2 А2 Боковые ребра призмы обозначены a, b и c. На П2 эти ребра имеют натуральную величину (являются фронталями). Поэтому след нормаль-ного сечения можно провести на исходном чертеже без его преобра-зования перпендикулярно проекциям - натуральным величинам ребер. c1 b1 a1
А2 На П2 проводим след плоскости Р2 перпендикулярно проекциям ребер - натуральным величинам. Для построения нормального сечения фикси- руем точки пересечения следа Р2 с проекциями ребер призмы как 12, 22 и 32. Проекции 11, 21, 31 располагаем на a1, b1, c1 соответственно. b1 a1 c1 a2 b2 c2 P2 12 22 32 11 31 21
P2 12 22 32 А2 Для построения развертки призмы необходима натуральная величина нормального сечения, которой нет на исходном чертеже. Применив способ плоско-параллельного перемещения, найдем проекцию треугольника - натуральную величину 11 21 31 . c1 b1 a1 a2 b2 c2 11 31 21 н.в.
c1 b1 a1 P2 12 22 32 11 31 21 А2 Развертку начинаем строить, развернув натуральное нормальное сече- ние в прямую линию с обозначением узловых точек 10, 20, 30 и еще раз 10. Через узловые точки проводим натуральные ребра призмы перпендику- лярно линии нормального сечения, перенеся равные отрезки ребер с П2. н.в. a2 b2 c2 32 22 12 31 11 21
c1 b1 a1 P2 12 22 32 11 31 21 А2 Достраиваем натуральные основания призмы способом засечек и получаем ее полную развертку. н.в. a2 b2 c2 10 20 30 10 32 22 12 31 11 21
c1 b1 a1 P2 12 22 32 11 31 21 А2 Точку А, заданную на поверхности, легко построить на развертке. Для этого на нужной грани через точку А проводим дополнительную прямую и, определив ее место на натуральной величине нормального сечения, находим расположение этой прямой вместе с точкой А0 на развертке. н.в. a2 b2 c2 10 20 30 10 А0 32 22 12 31 11 21









