Школа » Презентации » Презентации по Геометрии » Золотая теорема геометрии

Презентация - "Золотая теорема геометрии"

0
14.10.20
На нашем сайте презентаций klass-uchebnik.com вы можете бесплатно ознакомиться с полной версией презентации "Золотая теорема геометрии". Учебное пособие по дисциплине - Презентации / Презентации по Геометрии, от атора . Презентации нашего сайта - незаменимый инструмент для школьников, здесь они могут изучать и просматривать слайды презентаций прямо на сайте на вашем устройстве (IPhone, Android, PC) совершенно бесплатно, без необходимости регистрации и отправки СМС. Кроме того, у вас есть возможность скачать презентации на ваше устройство в формате PPT (PPTX).
Золотая теорема геометрии Учебники, Презентации и Подготовка к Экзаменам для Школьников на Klass-Uchebnik.com

0
0
0

Поделиться презентацией "Золотая теорема геометрии" в социальных сетях: 

Просмотреть и скачать презентацию на тему "Золотая теорема геометрии"

Сайт klass-uchebnik.com предлагает качественные учебные материалы для школьников, родителей и учителей. Здесь можно бесплатно читать и скачивать современные учебники, рабочие тетради, а также наглядные презентации по всем предметам школьной программы. Материалы распределены по классам и темам, что делает поиск максимально удобным. Каждое пособие отличается логичной структурой, доступной подачей материала и соответствует действующим образовательным стандартам. Благодаря простому языку, наглядным схемам и практическим заданиям, обучение становится легче и эффективнее. Учебники подойдут как для ежедневной подготовки к урокам, так и для систематического повторения перед экзаменами.

Особое внимание стоит уделить разделу с презентациями - они становятся отличным визуальным дополнением к теории, помогают лучше понять сложные темы и удерживают внимание учащихся. Такие материалы удобно использовать в классе на интерактивной доске или при самостоятельной подготовке дома. Все размещённые на платформе материалы проверены на актуальность и соответствие учебной программе. Это делает сайт надёжным помощником в образовательном процессе для всех участников: школьников, учителей и родителей. Особенно удобно, что всё доступно онлайн без регистрации и в свободном доступе.

Если вы ищете надежный источник для подготовки к урокам, контрольным и экзаменам - klass-uchebnik.com станет отличным выбором. Здесь вы найдёте всё необходимое, включая "Золотая теорема геометрии", чтобы сделать обучение более организованным, интересным и результативным.

ЗОЛОТАЯ ТЕОРЕМА ГЕОМЕТРИИ Различные доказательства теоремы Пифагора 8 класс * МОУ “Яконурская средня
1 слайд

ЗОЛОТАЯ ТЕОРЕМА ГЕОМЕТРИИ Различные доказательства теоремы Пифагора 8 класс * МОУ “Яконурская средняя общеобразовательная школа” Учитель математики Елекова Эльвира Михайловна Елекова Э.М. Республика Алтай

Золотая теорема геометрии Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его к
2 слайд

Золотая теорема геометрии Квадрат гипотенузы прямоугольного треугольника равен сумме квадратов его катетов. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Смотри и докажи! (∆ АВС- прямоугольный равнобедренный) Елекова Э.М. Республика Алтай * Елекова Э.М.
3 слайд

Смотри и докажи! (∆ АВС- прямоугольный равнобедренный) Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Смотри и докажи! Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай
4 слайд

Смотри и докажи! Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Доказательство Вальдхейма ( по некоторым данным: Джеймса Гарфилда (двадцатого президента США, 1880 г
5 слайд

Доказательство Вальдхейма ( по некоторым данным: Джеймса Гарфилда (двадцатого президента США, 1880 г) Елекова Э.М. Республика Алтай * Площадь трапеции с основаниями а и в, и высотой а+в можно вычислить двумя способами: S= (a+b)2/2 S= 2(ab/2) + c2/2 Елекова Э.М. Республика Алтай

Смотри и докажи, применяя свойства площадей. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика
6 слайд

Смотри и докажи, применяя свойства площадей. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Доказательство индийского математика Басхары Елекова Э.М. Республика Алтай * a b c Достроим прямоуго
7 слайд

Доказательство индийского математика Басхары Елекова Э.М. Республика Алтай * a b c Достроим прямоугольный треугольник до квадрата со стороной, равной длине большего катета b Елекова Э.М. Республика Алтай

Отложим точно такие же треугольники как показано на рисунке. Елекова Э.М. Республика Алтай * Елекова
8 слайд

Отложим точно такие же треугольники как показано на рисунке. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

На рисунке есть квадрат, площадь которого равна b2 Есть квадрат, площадь которого равна c2 Елекова Э
9 слайд

На рисунке есть квадрат, площадь которого равна b2 Есть квадрат, площадь которого равна c2 Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Квадрат со стороной с состоит из четырех треугольников с катетами a и b и одного квадрата со стороно
10 слайд

Квадрат со стороной с состоит из четырех треугольников с катетами a и b и одного квадрата со стороной b-a Елекова Э.М. Республика Алтай * a b с Елекова Э.М. Республика Алтай

Рассуждения: Большой квадрат состоит из четырех равных прямоугольных треугольников с катетами а и b
11 слайд

Рассуждения: Большой квадрат состоит из четырех равных прямоугольных треугольников с катетами а и b и одного квадрата со стороной b-a т.е. с2=4∙Sтр + (b-a)2= = 4∙(ab/2) + (b-a)2= 2ab + b2 - 2ab + a2 = = a2 + b2 Итак, с2 = a2 + b2 что и требовалось доказать. Елекова Э.М. Республика Алтай * Елекова Э.М. Республика Алтай

Елекова Э.М. Республика Алтай * Повернем треугольник АВС вокруг С на 900 Доказательство Хоукинса Еле
12 слайд

Елекова Э.М. Республика Алтай * Повернем треугольник АВС вокруг С на 900 Доказательство Хоукинса Елекова Э.М. Республика Алтай

Елекова Э.М. Республика Алтай * S САА1 = b2/2 S СВВ1 = a2/2 SAA1BB1 = (a2 + b2)/2 с - общая сторона
13 слайд

Елекова Э.М. Республика Алтай * S САА1 = b2/2 S СВВ1 = a2/2 SAA1BB1 = (a2 + b2)/2 с - общая сторона ∆ А1ВВ1 и ∆ А1АВ1 B1D┴ AB SAA1BB1= (c∙BD + c∙ AD)/2 = = (c∙ AB)/2 = c2/2 (a2 + b2)/2 = c2/2 a2 + b2 = c2 что и требовалось доказать. Рассуждения Елекова Э.М. Республика Алтай

Елекова Э.М. Республика Алтай * Образовательные ресурсы Теорема Пифагора - история, доказательства,
14 слайд

Елекова Э.М. Республика Алтай * Образовательные ресурсы Теорема Пифагора - история, доказательства, применения. http://th-pif.narod.ru/index.htm Сайт учителя Шапошникова И.М. Геометрия. http://moypifagor.narod.ru Теорема Пифагора. http://th-pif.narod.ru/formul.htm В. Литцман Теорема Пифагора. http://ega-ath.narod.ru/Books/Pythagor.htm Елекова Э.М. Республика Алтай

Похожие презентации «Золотая теорема геометрии» в рубрике - Презентации / Презентации по Геометрии:


Комментарии (0) к презентации "Золотая теорема геометрии"